KEYWORDS FOR JOURNAL OF ALLOYS AND COMPOUNDS

Authors should select a maximum of five keywords. Each keyword should be accompanied by the capital letter denoting the category for which the keyword has been selected.

A. Type of Materials	Superconductors
	Surfaces and interfaces
Actinide alloys and compounds	Thin films
Amorphous materials	Transition metal alloys and compounds
Ceramics	Thermoelectric materials
Clusters	
Coating materials	B. Preparation and Processing
Composite materials	
Data storage materials	Amorphisation
Dental alloys	Chemical synthesis
Disordered systems	Crystal growth
Electrode materials	Gas-solid reactions
Energy storage materials	Laser processing
Ferroelectrics	Liquid-solid reactions
Fuel cells	Precipitation
Fullerenes	Powder metallurgy
Half metals	Mechanical alloying
Heterojunctions	Mechanochemical processing
High-temperature alloys	Nanofabrications
High-Tc superconductors	Rapid solidification, quenching
Hydrogen absorbing materials	Sintering
Inorganic materials	Sol-gel processes
Insulators	Solid state reactions
Intermetallics	Vapour deposition
Interstitial alloys	
Liquid crystals	
Magnetic films and multilayers	C. Phenomena
Magnetically ordered materials	
Metal hydrides	Atomic scale structure
Metallic glasses	Acoustic properties
Metal matrix composites	Anisotropy
Metals and alloys	Anharmonicity
Nanostructured materials	Catalysis
Nitride materials	Composition fluctuations
Nuclear reactor materials	Crystal structure
Optical materials	Crystal structure
Oxide materials	Crystal and ligand fields
Permanent magnets	Crystal binding and equation of state
Phosphors	
Polymers, elastomers, and plastics	Cyclotron resonance
Quantum wells	Dielectric response
Quasicrystals	Diffusion Dislocations and disclinations
	Dislocations and disclinations
Rare earth alloys and compounds	Domain structure
Semiconductors	Elasticity
Spin glasses	Electrical transport
	1

(CONTINUATION OF C)

Electrochemical reactions Electromotive force, EMF **Electron-electron interactions Electron-phonon interactions** Electronic band structure **Electronic properties** Enthalpy Entropy Exchange and superexchange Fractional quantum Hall effect Flux pinning and creep Galvanomagnetic effects Grain boundaries Heat capacity Heat conduction Heavy fermions Hyperfine interactions Ionic conduction Impurities in semiconductors Kondo effect **Kinetics** Magnetisation Magnetocaloric Magnetoresistance Magnetostriction Magneto-volume effects Mechanical properties Microstructure Noise **Optical properties** Order-disorder effects Oxidation Phase diagrams Phase transitions Phonons Photoconductivity and photovoltaics Piezoelectricity, electrostrition Preferential site ordering Point defects Ouantum Hall effect Quantum localization **Radiation effects Recombination and trapping** Shape memory Spin dynamics Spin-orbit effects Thermal expansion Thermodynamic properties

Thermoelectric Thermochemistry Tunnelling Vacancy formation Valence fluctuations

D. Experimental and Theoretical Methods

Atomic force microscopy, AFM Atom, molecule, and ion impact Calorimetrv **Computer simulations** Elastic light scattering Electrochemical impedance spectroscopy Electron emission spectroscopies Electron energy loss spectroscopy Electron paramagnetic resonance EXAFS, NEXAFS, SEXAFS **High-pressure** High magnetic fields Inelastic light scattering Inelastic neutron scattering Light absorption and reflection Luminescence Magnetic measurements Mössbauer spectroscopy Metallography Molecular dynamics simulations Muon spectroscopies Neutron diffraction Nonlinear optics Nuclear resonances Optical spectroscopy Perturbed angular correlations, PAC Photoelectron spectroscopies Positron spectroscopies Rutherford backscattering, RBS Scanning electron microscopy, SEM Scanning tunnelling microscopy, STM Strain, high pressure Surface electron diffraction (LEED, RHEED) Synchrotron radiation Thermal analysis Thermodynamic modeling Time-resolved optical spectroscopies Transmission electron microscopy, TEM X-ray diffraction X-ray and gamma-ray spectroscopies Ultrasonics